Partially based on joint work with Yaar Solomon

Plan of Talk

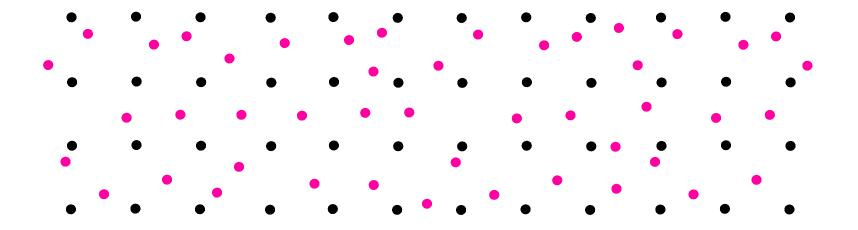
- Bounded displacement
 equivalence of point sets
- · Substitution tilings
- · Multiscale substitution tilings

ЦТТ		
H		
		┼╂┯╉┼╂┯╉┼╞
		┲+

Bounded Displacement Equivalence

A uniformly discrete and relatively dense set $\Lambda \in \mathbb{R}^d$ is called Delone. Delone sets $\Lambda, \Gamma \in \mathbb{R}^d$ are bounded displacement (BD) equivalent if \exists

bijection $\eta: \Lambda \rightarrow \Pi$ that moves every point a bounded distance.



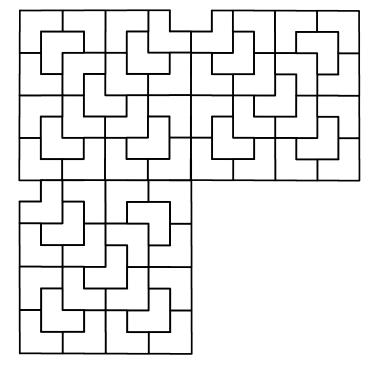
Bounded Displacement Equivalence

A uniformly discrete and relatively dense set $\Lambda \in \mathbb{R}^d$ is called Delone. Delone sets $\Lambda, \Pi \in \mathbb{R}^d$ are bounded displacement (BD) equivalent if \exists

bijection $\psi: \Lambda \rightarrow \Pi$ that moves every point a bounded distance. Λ is uniformly spread if it is BD to $\alpha \mathbb{Z}^d$ for some $\alpha > 0$. Not all Delone sets are uniformly spread

A Basic Result

Define a Delone set $\Lambda = \Lambda_T$ by picking one point in every tile in a tiling T of \mathbb{R}^d that consists of copies of a single tile.



Folklore

A is uniformly spread

A Basic Result

Define a Delone set $\Lambda = \Lambda_T$ by picking one point in every tile in a tiling T of \mathbb{R}^{d} that consists of copies of a single tile.

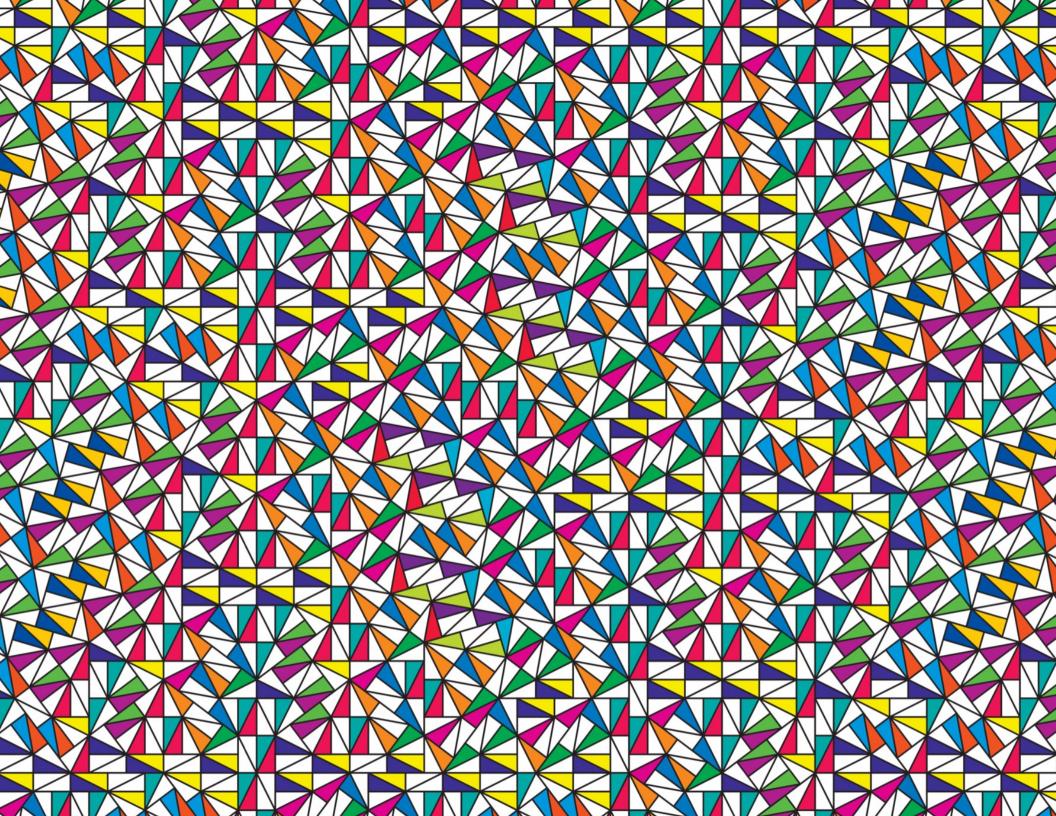
Folklore

A is uniformly spread

Proof define a bipartite graph G_{A} : $V = \{ Tiles T in T \} \cup \{ Lattice cubes C of volume vol(T) \}$ $E = \{ \{ T, C \} \mid T \cap C \neq \phi \}$

If G_{Λ} contains a perfect matching $\Rightarrow \Lambda$ is uniformly spread Hall's Marriage Theorem (or version due to Rado) A bipartite graph $G = (V, \cup V_2, E)$ contains a perfect matching \implies V finite subsets $F_1 \subset V_1$, $F_2 \subset V_2$: $\# F_1 \ll \# N_G(F_1)$ and $\# F_2 \ll \# N_G(F_2)$

Hall's Marriage Theorem (ou version due to Rado) A bipartite graph $G = (V_1 \cup V_2, E)$ contains a perfect matching ⇒ ∀ finite subsets F, CV, , F₂CV₂ : $\#F_1 \leq \#N_G(F_1)$ and $\#F_2 \leq \#N_G(F_2)$ Pick a finite set F, of tiles in T. Volumes of tiles and cubes are the same => count cover k of one with less than k of the other: $\#F_{r} \leq \#\{ \text{ lattice cubes required to cover } F_{r} \}$ = $\#N_{G_{\Lambda}}(F_1)$ (Similarly $\#F_2 \ll \#N_{G_{\Lambda}}(F_2)$) => G, contains a perfect matching and A is uniformly spread Corollary lattices & periodic sets are unif. spread (Duneau, Oguey 90)



Laczkovich Criterion

Using Hall's Theorem for BD is originally due to Laczkovich: $\Lambda \stackrel{\text{80}}{=} \Gamma \iff \exists \text{ meN for which } G_m \text{ contains a perfect matching, where}$ $G_m = (V, \cup V_2, E_m) = (\Lambda \cup \Gamma, \{\{x,y\} \mid x \in \Lambda, y \in \Gamma, \|x-y\| \le m\})$

Laczkovich'92 For a Delone set $\Lambda c \mathbb{R}^d$ the following are equivalent:

- A is uniformly spread
- There exist a, C > 0 so that $\forall A \in Q_d = \{ \text{finite unions of lattice cubes} \}$ discrepancy $| \# (A \cap \Lambda) - a \cdot \text{vol}(A) | \leq C \cdot \text{vol}_{d_1}(\partial A) \}$

Laczkovich Criterion

Using Hall's Theorem for BD is originally due to Laczkovich: $\Lambda \stackrel{80}{\sim} \Gamma \iff \exists \text{ melN for which } G_m \text{ contains a perfect matching, where}$ $G_m = (V, UV_2, E_m) = (\Lambda \cup \Gamma, \S_{\{x,y\}} \mid x \in \Lambda, y \in \Gamma, \|x-y\| \le m\})$

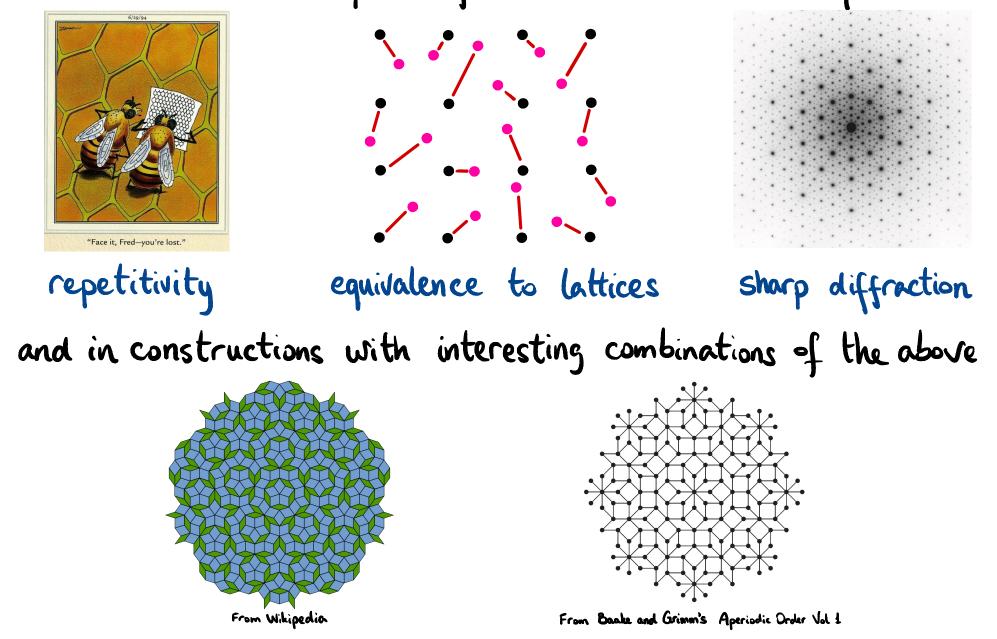
Theorem (FSS 21 and SS2 21) The following are equivalent:

- A and I are not BD equivalent
- There exists a sequence of sets $A_m \in Q_d$ so that $\frac{|\#(A_m \cap \Lambda) - \#(A_m \cap \Gamma)|}{|U_{d-1}(\partial A_m)} \xrightarrow{m \to \infty} \infty$

Our motivation is the study of constructions in aperiodic order.

Aperiodic Order

We are intersted in aspects of order and disorder in aperiodic sets



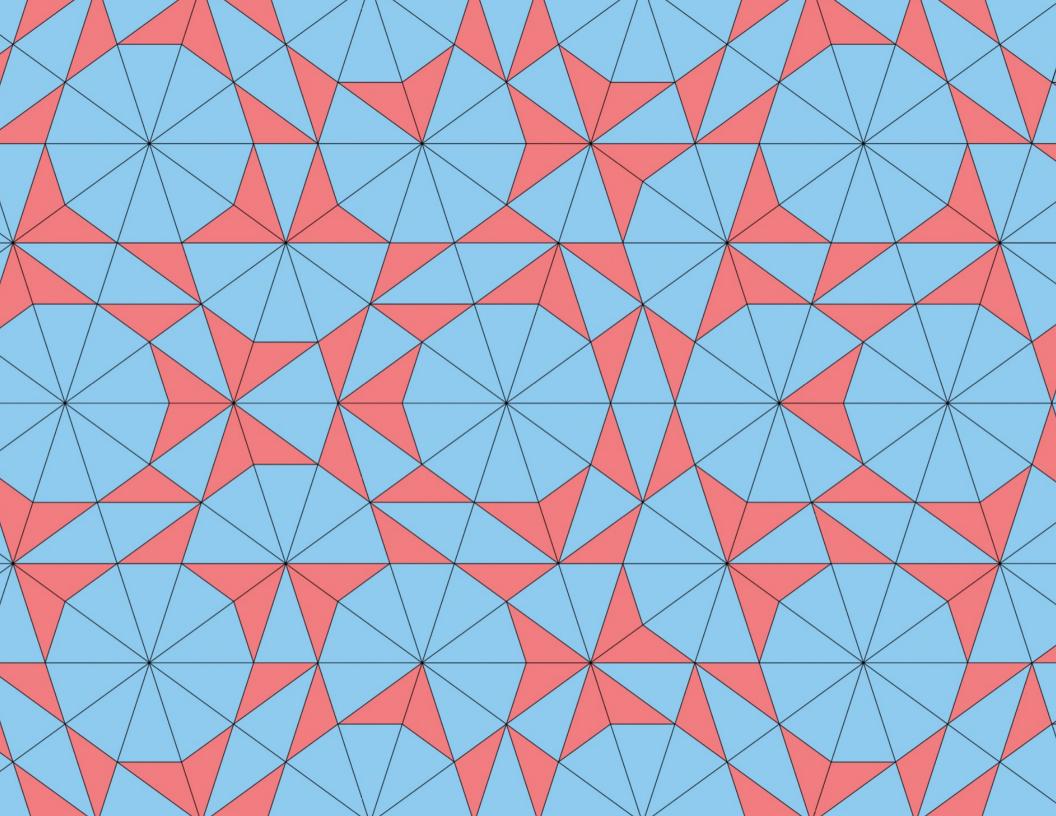
Plan of Talk

- · Bounded displacement equivalence of point sets
- · Substitution tilings
- · Multiscale substitution tilings

		╶┤╴╫
ㅂ		
	H H H	

Substitution Tilings

A tiling is a collection of tiles with disjoint interiors that covers \mathbb{R}^d . A substitution rule on a set of prototiles is a tessellation of each prototile by rescaled prototiles, with a fixed scale $\in (0,1)$ Repeated applications of the substitution rule followed by a rescaling define larger and larger patches.



BD Equivalence For Substitution Tilings

Are Delone sets that correspond to Penrose tilings uniformly spread? What can we expect for other substitution tilings?

Laczkovich: it's a question of discrepancy $(|\#(A\cap\Lambda) - \alpha \cdot v_0|(A)| \stackrel{?}{\leq} C \cdot v_0|_{d_1}(\partial A))$ => A question of counting tiles.

A substitution rule defines a substitution matrix S. $A = S = \begin{pmatrix} 2 \\ 1 \\ 1 \end{pmatrix}$

tiles in patches = entries of powers of S Perron-Frobenius Theorem : main term governed by leading eigenvalue error term by smaller eigenvalues discrepancy

BD Equivalence For Substitution Tilings

Theorem (Solomon '14) Let j≥2 be the minimal index with V₂ ≤ 1¹, where >₁ > 1>₂1 ≥ ... ≥ 1>_n1 are the eigenvalues of S. Then
1>_j1 < >_i^{d-1}/_a => Corresponding Delone sets are uniformly spread.
1>_j1 > >_i^{d-1}/_a => Corresponding Delone sets are not uniformly spread.
1>_j1 > >_i^{d-1}/_a => Corresponding Delone sets are not uniformly spread.

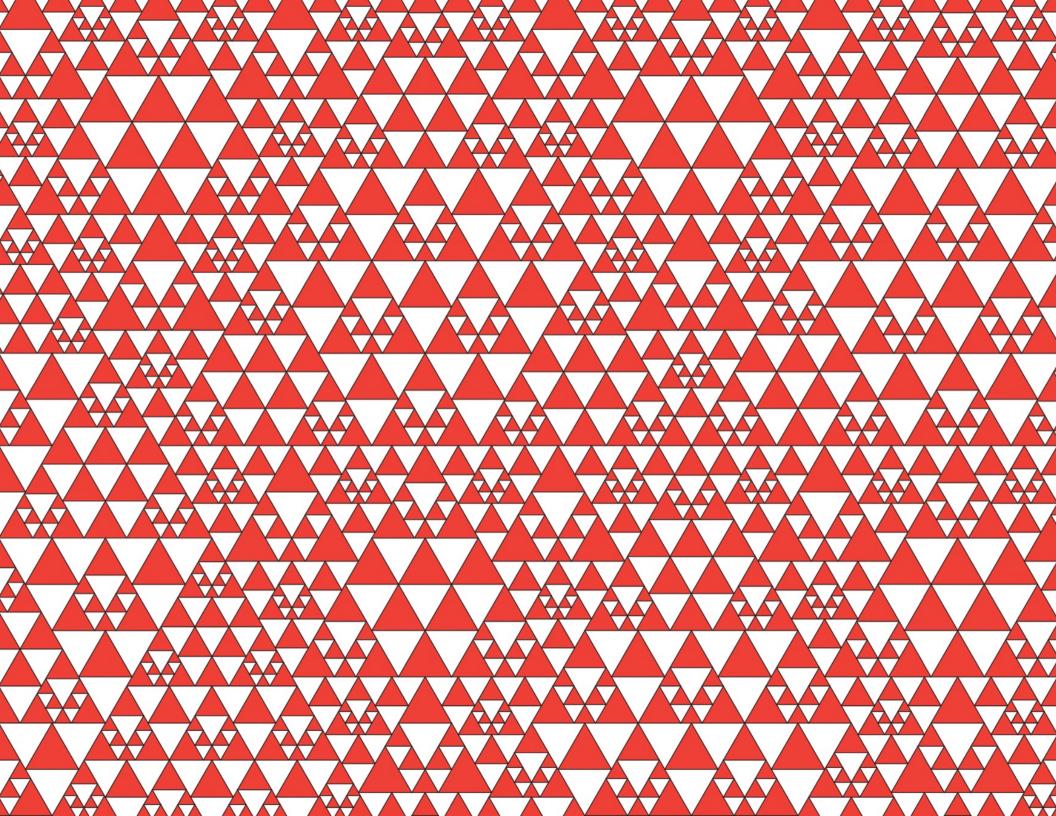
BD Equivalence For Substitution Tilings

Plan of Talk

- Bounded displacement
 equivalence of point sets
- · Substitution tilings
- · Multiscale substitution tilings

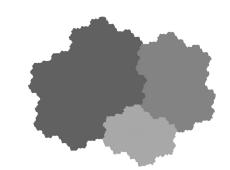
	F		
			詽
			⋕
			H
			Ħ
			-H
ᇤ			
			RH
ᇤ			E
		╵┶┶┶	E
			Ē
			Ħ
		<u>╷╏┉╢╵╏┉╢╶╵╵╏┉╫╵┤╶╏┉╢╵╏┉╢╵┨</u> ┉┨┨ <u>╶</u> ┨┨╥	钼

Incommensurable Multiscale Substitution Tilings (SS1 2) A multiscale substitution scheme & in Rd consists of a substitution rule on unit volume prototiles T.,..., Tn, where various different scales appear and satisfy a simple incommensurabily condition. A time-dependant substitution semiflow Fz defines a family of patches: At time t=0 $F_t(T)=T$, and as t increases the patch is inflated by et and tiles of volume>1 are substituted.

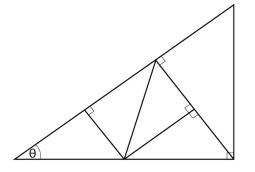


Some Predecessors

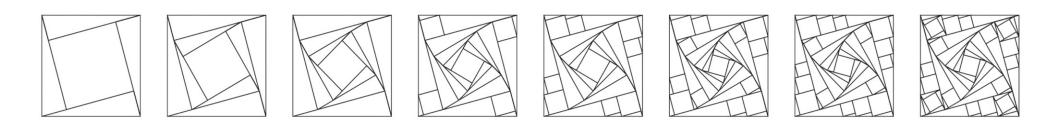
· Rauzy's fractal '81



multiple (but commensurable) scales

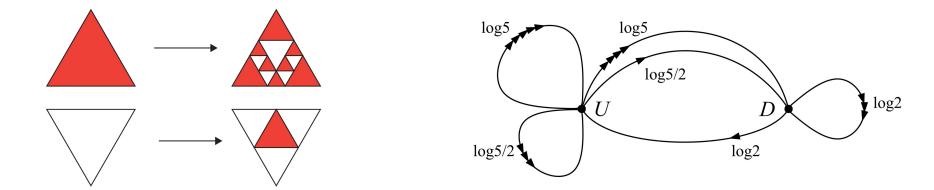


- Conway and Radin's pinwheel tiling '94
 0 = arctan 1/2 => same triangle incommensurable directions
- · Sadun's generalized pinwheel tilings '98
- a-Kakutani sequences in [0,1] '76 and 1-a always split longest interval
- · S´zo: multiscale substitution Kakutani sequences of partitions



The Associated Graph Go

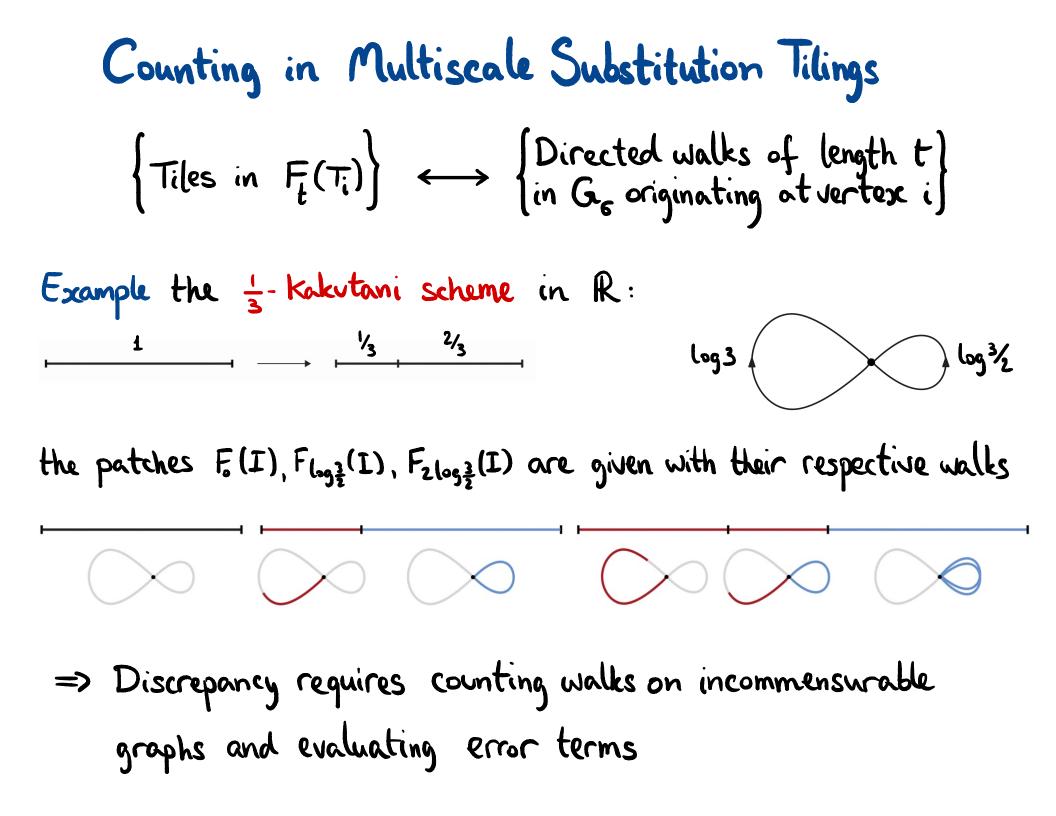
A directed weighted graph is defined according to 6



Vertices model the prototiles

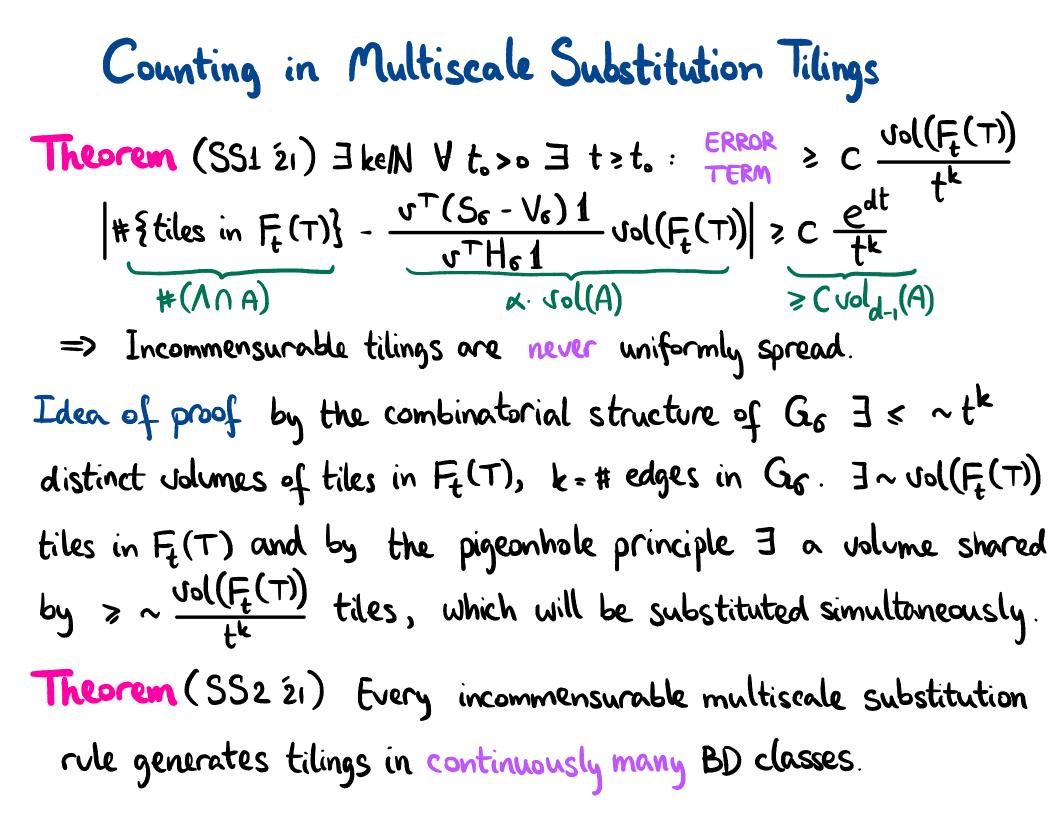
Edges model the tiles appearing in the substitution rule with Lengths = log(1/scale)

6 is incommensurable if G_{σ} contains two closed paths of lengths $\frac{\alpha}{6} \notin Q$. Incommensurable multiscale substitution schemes generate a new distinct class of tilings of \mathbb{R}^{d} .



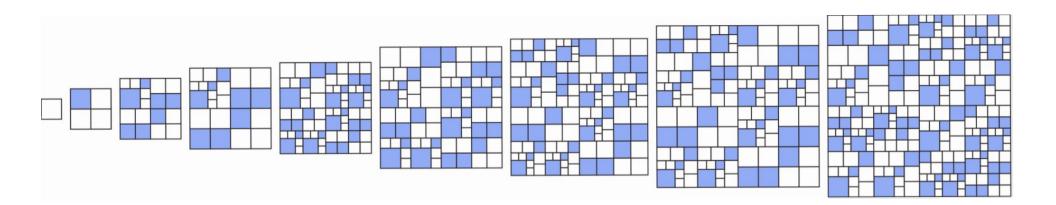
Counting in Multiscale Substitution Tilings
Theorem (S = 21, relying on Kiro, Smilansky × 2 '20)
{ tiles in
$$F_{t}(T)$$
 } = $\frac{v^{T}(S_{e} - V_{e})1}{v^{T}H_{e}1} - \frac{e^{dt}}{v^{e}(F_{t}(T))}$ + $\frac{e^{dt}}{TERM}$, $t \to \infty$
combinatorics (S_e)_{ij} = $\sum_{in T_{t}} \frac{1}{v^{e}}$ + $\frac{reds in white}{S_{e} = \begin{pmatrix} 8 & 5 \\ 1 & 3 \end{pmatrix}}$
volume
matrix (V_e)_{ij} = $\sum_{in T_{t}} \int_{uin T$

and u^T = left Perron-Frobenius eigenvector of Ve



Counting in Multiscale Substitution Tilings

- Theorem (S=21, relying on Kiro, Smilansky×2 '20) Similar asymptotic formulas for:
 - # {tiles of type and vole [a,b] in Ff (T)}
 - volume (U { tiles of type and vol < [a,b] in F_t (T) })
 - · Expected values for random partitions



Counting in Multiscale Substitution Tilings

Theorem (Szizi, relying on Kiro, Smilansky ×2 '20) similar formulas for

· Gap distribution A - Delone set of tile boundaries in a 1-dim tiling

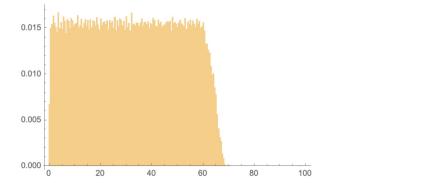
where
$$(C_{6}(x)) = 2$$
 $\begin{bmatrix} \frac{1}{x^{2}} \\ 0 \end{bmatrix}$

otherwise

· Numerics for pair correlations are consistent with Poisson process

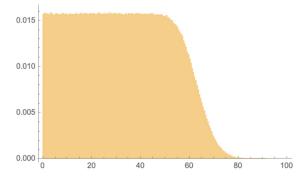
list = $\{0, 3^{10}\}; i = 1;$ Do[While[list[[i + 1]] - list[[i]] > 1,

list = Insert[list, list[[i]] + (list[[i+1]] - list[[i]]) / 3, i+1]], {i, 91005}]; gaps = Flatten[Table[N[Differences[list, 1, j]], {j, 1, 100}]]; Histogram[gaps, {0, 100, 0.5}, "PDF"]

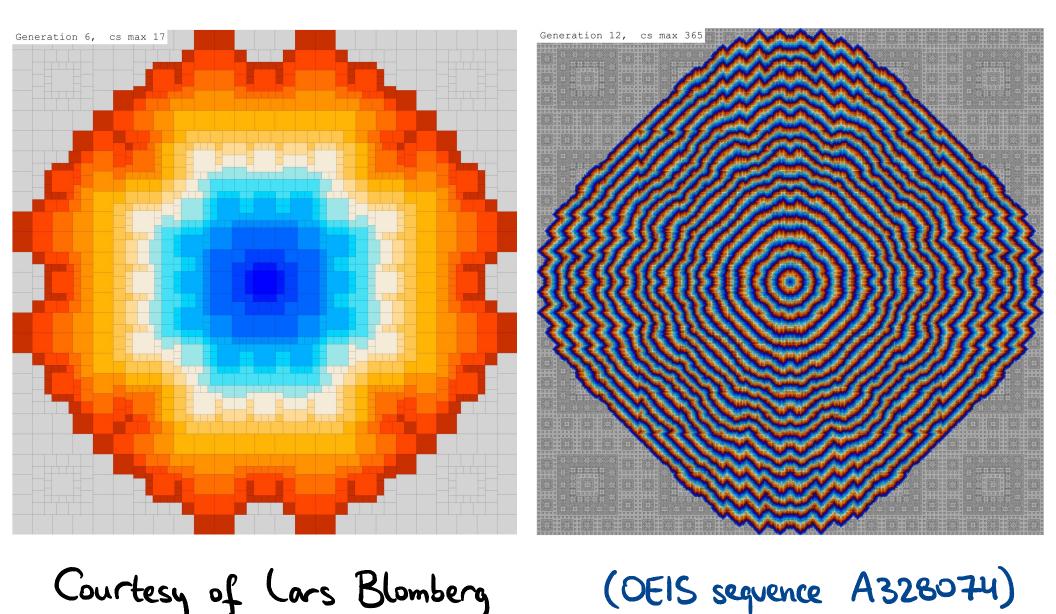


averagegap = 1/(-(1/3) * Log[1/3] - (2/3) * Log[2/3]);

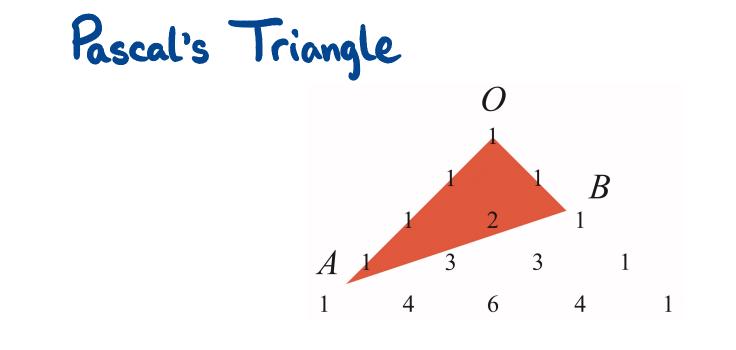
list = Accumulate[RandomVariate[ExponentialDistribution[averagegap], 90 000]]; gaps = Flatten[Table[N[Differences[list, 1, j]], {j, 1, 100}]]; Histogram[gaps, {0, 100, 0.5}, "PDF"]



a(n) == # tiles of distance n from center = 1,12,16,16,40,...



Courtesy of Lars Blomberg



Sum of binomial coefficients inside
triangle of sides
$$OA = \frac{x}{a} \quad OB = \frac{x}{b} = b$$

Theorem (Kiro, Smilansky×2 '20) If $a \notin Ob$ then this is
 $\frac{1}{ae^{-\lambda a} + abe^{-\lambda b}}e^{\lambda x} + o(e^{\lambda x}), \quad x \to \infty$
where $\lambda > a$ is the unique coal zero of $f(s) = be^{-as} - e^{-bs}$

